Search results
Results from the WOW.Com Content Network
In the empirical sciences, the so-called three-sigma rule of thumb (or 3 σ rule) expresses a conventional heuristic that nearly all values are taken to lie within three standard deviations of the mean, and thus it is empirically useful to treat 99.7% probability as near certainty.
In analytical chemistry, the detection limit, lower limit of detection, also termed LOD for limit of detection or analytical sensitivity (not to be confused with statistical sensitivity), is the lowest quantity of a substance that can be distinguished from the absence of that substance (a blank value) with a stated confidence level (generally 99%).
About 68% of values drawn from a normal distribution are within one standard deviation σ from the mean; about 95% of the values lie within two standard deviations; and about 99.7% are within three standard deviations. [8] This fact is known as the 68–95–99.7 (empirical) rule, or the 3-sigma rule.
The sample extrema can be used for a simple normality test, specifically of kurtosis: one computes the t-statistic of the sample maximum and minimum (subtracts sample mean and divides by the sample standard deviation), and if they are unusually large for the sample size (as per the three sigma rule and table therein, or more precisely a Student ...
Relative probabilities in a normal distribution. In the case of normally distributed data, the three sigma rule means that roughly 1 in 22 observations will differ by twice the standard deviation or more from the mean, and 1 in 370 will deviate by three times the standard deviation. [6]
For example, to calculate the 95% prediction interval for a normal distribution with a mean (μ) of 5 and a standard deviation (σ) of 1, then z is approximately 2. Therefore, the lower limit of the prediction interval is approximately 5 ‒ (2⋅1) = 3, and the upper limit is approximately 5 + (2⋅1) = 7, thus giving a prediction interval of ...
Example 3: Bounded normal mean: When estimating the mean of a normal vector (,), where it is known that ‖ ‖. The Bayes estimator with respect to a prior which is uniformly distributed on the edge of the bounding sphere is known to be minimax whenever M ≤ n {\displaystyle M\leq n\,\!} .
By a similar argument, the numerator values of 3.51, 4.61, and 5.3 may be used for the 97%, 99%, and 99.5% confidence intervals, respectively, and in general the upper end of the confidence interval can be given as (), where is the desired confidence level.