Search results
Results from the WOW.Com Content Network
Rate of change of velocity per unit time: the second time derivative of position m/s 2: L T −2: vector Angular acceleration: ω a: Change in angular velocity per unit time rad/s 2: T −2: pseudovector Angular momentum: L: Measure of the extent and direction an object rotates about a reference point kg⋅m 2 /s L 2 M T −1: conserved ...
Delta-v (also known as "change in velocity"), symbolized as and pronounced /dɛltə viː/, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver.
The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.
A space vehicle's flight is determined by application of Newton's second law of motion: =, where F is the vector sum of all forces exerted on the vehicle, m is its current mass, and a is the acceleration vector, the instantaneous rate of change of velocity (v), which in turn is the instantaneous rate of change of displacement.
The 1-dimensional velocity structure of the Earth, grey area indicating the transition zone. The change in velocity at the core-mantle boundary (CMB) represents changes in physical state from solid to fluid. At the inner-core boundary (ICB), the core changes from fluid to solid as reflected by the increase in velocity. [3]
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
The full Chandrasekhar dynamical friction formula for the change in velocity of the object involves integrating over the phase space density of the field of matter and is far from transparent.