Search results
Results from the WOW.Com Content Network
The standard library helpers collections.namedtuple and typing.NamedTuple, available from Python 3.6 onward, create simple immutable classes. The following example is roughly equivalent to the above, plus some tuple-like features:
Python's is operator may be used to compare object identities (comparison by reference), and comparisons may be chained—for example, a <= b <= c. Python uses and, or, and not as Boolean operators. Python has a type of expression named a list comprehension, and a more general expression named a generator expression. [78]
A snippet of Python code with keywords highlighted in bold yellow font. The syntax of the Python programming language is the set of rules that defines how a Python program will be written and interpreted (by both the runtime system and by human readers). The Python language has many similarities to Perl, C, and Java. However, there are some ...
In Python, if a name is intended to be "private", it is prefixed by one or two underscores. Private variables are enforced in Python only by convention. Names can also be suffixed with an underscore to prevent conflict with Python keywords. Prefixing with double underscores changes behaviour in classes with regard to name mangling.
Python's runtime does not restrict access to such attributes, the mangling only prevents name collisions if a derived class defines an attribute with the same name. On encountering name mangled attributes, Python transforms these names by prepending a single underscore and the name of the enclosing class, for example:
In languages that do not support named parameters, the order of arguments in a function call is necessarily fixed, since it is the only way that the language can identify which argument is intended to be used for which parameter.
Duck typing is similar to, but distinct from, structural typing.Structural typing is a static typing system that determines type compatibility and equivalence by a type's structure, whereas duck typing is dynamic and determines type compatibility by only that part of a type's structure that is accessed during runtime.
For example, a complex number can be represented as a 2‑tuple of reals, a quaternion can be represented as a 4‑tuple, an octonion can be represented as an 8‑tuple, and a sedenion can be represented as a 16‑tuple. Although these uses treat ‑uple as the suffix, the original suffix was ‑ple as in "triple" (three-fold) or "decuple" (ten ...