Search results
Results from the WOW.Com Content Network
The algorithm takes a list of all the elements of the sequence, and continually determines the next element in the shuffled sequence by randomly drawing an element from the list until no elements remain. [1] The algorithm produces an unbiased permutation: every permutation is equally likely.
The size n of the orbit is called the length of the corresponding cycle; when n = 1, the single element in the orbit is called a fixed point of the permutation. A permutation is determined by giving an expression for each of its cycles, and one notation for permutations consist of writing such expressions one after another in some order.
In a 1977 review of permutation-generating algorithms, Robert Sedgewick concluded that it was at that time the most effective algorithm for generating permutations by computer. [2] The sequence of permutations of n objects generated by Heap's algorithm is the beginning of the sequence of permutations of n+1 objects.
In combinatorial mathematics and theoretical computer science, a (classical) permutation pattern is a sub-permutation of a longer permutation.Any permutation may be written in one-line notation as a sequence of entries representing the result of applying the permutation to the sequence 123...; for instance the sequence 213 represents the permutation on three elements that swaps elements 1 and 2.
A main problem in permutation codes is to determine the value of (,), where (,) is defined to be the maximum number of codewords in a permutation code of length and minimum distance . There has been little progress made for 4 ≤ d ≤ n − 1 {\displaystyle 4\leq d\leq n-1} , except for small lengths.
Bit-reversal permutations are often used in finding lower bounds on dynamic data structures. For example, subject to certain assumptions, the cost of looking up the integers between 0 {\displaystyle 0} and n − 1 {\displaystyle n-1} , inclusive, in any binary search tree holding those values, is Ω ( n log n ) {\displaystyle \Omega (n\log ...
The ! permutations of the numbers from 1 to may be placed in one-to-one correspondence with the ! numbers from 0 to ! by pairing each permutation with the sequence of numbers that count the number of positions in the permutation that are to the right of value and that contain a value less than (that is, the number of inversions for which is the ...
In computer science, bogosort [1] [2] (also known as permutation sort and stupid sort [3]) is a sorting algorithm based on the generate and test paradigm. The function successively generates permutations of its input until it finds one that is sorted. It is not considered useful for sorting, but may be used for educational purposes, to contrast ...