Search results
Results from the WOW.Com Content Network
In coding theory and information theory, a binary erasure channel (BEC) is a communications channel model. A transmitter sends a bit (a zero or a one), and the receiver either receives the bit correctly, or with some probability P e {\displaystyle P_{e}} receives a message that the bit was not received ("erased") .
To determine the channel capacity, it is necessary to find the capacity-achieving distribution () and evaluate the mutual information (;). Research has mostly focused on studying additive noise channels under certain power constraints and noise distributions, as analytical methods are not feasible in the majority of other scenarios.
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
In contrast, belief propagation on the binary erasure channel is particularly simple where it consists of iterative constraint satisfaction. For example, consider that the valid codeword, 101011, from the example above, is transmitted across a binary erasure channel and received with the first and fourth bit erased to yield ?01?11.
It is the first code with an explicit construction to provably achieve the channel capacity for symmetric binary-input, discrete, memoryless channels (B-DMC) with polynomial dependence on the gap to capacity. [1] Polar codes were developed by Erdal Arikan, a professor of electrical engineering at Bilkent University.
ARQ is appropriate if the communication channel has varying or unknown capacity, such as is the case on the Internet. However, ARQ requires the availability of a back channel , results in possibly increased latency due to retransmissions, and requires the maintenance of buffers and timers for retransmissions, which in the case of network ...
The BSC has a capacity of 1 − H b (p) bits per channel use, where H b is the binary entropy function to the base-2 logarithm: A binary erasure channel (BEC) with erasure probability p is a binary input, ternary output channel. The possible channel outputs are 0, 1, and a third symbol 'e' called an erasure.
Graph showing the proportion of a channel’s capacity (y-axis) that can be used for payload based on how noisy the channel is (probability of bit flips; x-axis). The channel capacity of the binary symmetric channel, in bits, is: [2] = (),