enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    Convergence is not necessarily given in the general case, and certain criteria must be met for convergence to occur. Determination of convergence requires the comprehension of pointwise convergence, uniform convergence, absolute convergence, L p spaces, summability methods and the Cesàro mean.

  3. Carleson's theorem - Wikipedia

    en.wikipedia.org/wiki/Carleson's_theorem

    The books Fremlin (2003) and Grafakos (2014) also give proofs of Carleson's theorem. Katznelson (1966) showed that for any set of measure 0 there is a continuous periodic function whose Fourier series diverges at all points of the set (and possibly elsewhere). When combined with Carleson's theorem this shows that there is a continuous function ...

  4. Dirichlet kernel - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_kernel

    The convolution of D n (x) with any function f of period 2 π is the nth-degree Fourier series approximation to f, i.e., we have () = () = = ^ (), where ^ = is the k th Fourier coefficient of f. This implies that in order to study convergence of Fourier series it is enough to study properties of the Dirichlet kernel.

  5. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    The theorems proving that a Fourier series is a valid representation of any periodic function (that satisfies the Dirichlet conditions), and informal variations of them that don't specify the convergence conditions, are sometimes referred to generically as Fourier's theorem or the Fourier theorem.

  6. Wiener algebra - Wikipedia

    en.wikipedia.org/wiki/Wiener_algebra

    The sum of an absolutely convergent Fourier series is continuous, so ()where C(T) is the ring of continuous functions on the unit circle.. On the other hand an integration by parts, together with the Cauchy–Schwarz inequality and Parseval's formula, shows that

  7. Dirichlet–Jordan test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet–Jordan_test

    In signal processing, the test is often retained in the original form due to Dirichlet: [8] [9] [10] a piecewise monotone bounded periodic function (having a finite number of monotonic intervals per period) has a convergent Fourier series whose value at each point is the arithmetic mean of the left and right limits of the function.

  8. Riemann–Lebesgue lemma - Wikipedia

    en.wikipedia.org/wiki/Riemann–Lebesgue_lemma

    A version holds for Fourier series as well: if is an integrable function on a bounded interval, then the Fourier coefficients ^ of tend to 0 as . This follows by extending f {\displaystyle f} by zero outside the interval, and then applying the version of the Riemann–Lebesgue lemma on the entire real line.

  9. Fejér's theorem - Wikipedia

    en.wikipedia.org/wiki/Fejér's_theorem

    Proof: a) Given that is the mean of , the integral of which is 1, by linearity, the integral of is also equal to 1.. b) As () is a geometric sum, we get an simple formula for () and then for (),using De Moivre's formula :