enow.com Web Search

  1. Ads

    related to: square free element maths practice
  2. teacherspayteachers.com has been visited by 100K+ users in the past month

    • Assessment

      Creative ways to see what students

      know & help them with new concepts.

    • Projects

      Get instructions for fun, hands-on

      activities that apply PK-12 topics.

    • Packets

      Perfect for independent work!

      Browse our fun activity packs.

    • Lessons

      Powerpoints, pdfs, and more to

      support your classroom instruction.

Search results

  1. Results from the WOW.Com Content Network
  2. Square-free element - Wikipedia

    en.wikipedia.org/wiki/Square-free_element

    In mathematics, a square-free element is an element r of a unique factorization domain R that is not divisible by a non-trivial square. This means that every s such that s 2 ∣ r {\displaystyle s^{2}\mid r} is a unit of R .

  3. Square-free integer - Wikipedia

    en.wikipedia.org/wiki/Square-free_integer

    In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 3 2. The smallest ...

  4. Quadratic field - Wikipedia

    en.wikipedia.org/wiki/Quadratic_field

    Every such quadratic field is some () where is a (uniquely defined) square-free integer different from and . If d > 0 {\displaystyle d>0} , the corresponding quadratic field is called a real quadratic field , and, if d < 0 {\displaystyle d<0} , it is called an imaginary quadratic field or a complex quadratic field , corresponding to whether or ...

  5. Square-difference-free set - Wikipedia

    en.wikipedia.org/wiki/Square-difference-free_set

    In mathematics, a square-difference-free set is a set of natural numbers, no two of which differ by a square number. Hillel Furstenberg and András Sárközy proved in the late 1970s the Furstenberg–Sárközy theorem of additive number theory showing that, in a certain sense, these sets cannot be very large.

  6. Radical of an ideal - Wikipedia

    en.wikipedia.org/wiki/Radical_of_an_ideal

    Consider the ring of integers.. The radical of the ideal of integer multiples of is (the evens).; The radical of is .; The radical of is .; In general, the radical of is , where is the product of all distinct prime factors of , the largest square-free factor of (see Radical of an integer).

  7. Discriminant of an algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Discriminant_of_an...

    In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field. More specifically, it is proportional to the squared volume of the fundamental domain of the ring of integers , and it regulates which primes are ramified .

  1. Ads

    related to: square free element maths practice