Search results
Results from the WOW.Com Content Network
2D Contour Plot of Taylor Green Vortex. In fluid dynamics, the Taylor–Green vortex is an unsteady flow of a decaying vortex, which has an exact closed form solution of the incompressible Navier–Stokes equations in Cartesian coordinates.
In fluid dynamics, the Lamb–Oseen vortex models a line vortex that decays due to viscosity. This vortex is named after Horace Lamb and Carl Wilhelm Oseen. [1] [2] Vector plot of the Lamb–Oseen vortex velocity field. Evolution of a Lamb–Oseen vortex in air in real time. Free-floating test particles reveal the velocity and vorticity pattern.
A flow that is not a function of time is called steady flow. Steady-state flow refers to the condition where the fluid properties at a point in the system do not change over time. Time dependent flow is known as unsteady (also called transient [8]). Whether a particular flow is steady or unsteady, can depend on the chosen frame of reference.
Visualisation of the vortex street behind a circular cylinder in air; the flow is made visible through release of glycerol vapour in the air near the cylinder. In fluid dynamics, a Kármán vortex street (or a von Kármán vortex street) is a repeating pattern of swirling vortices, caused by a process known as vortex shedding, which is responsible for the unsteady separation of flow of a fluid ...
In fluid dynamics, a vortex (pl.: vortices or vortexes) [1] [2] is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. [3] [4] Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or dust devil.
In the aircraft example, the observer on the ground will observe unsteady flow, and the observers in the aircraft will observe steady flow, with constant streamlines. When possible, fluid dynamicists try to find a reference frame in which the flow is steady, so that they can use experimental methods of creating streaklines to identify the ...
The Vortex lattice method, (VLM), is a numerical method used in computational fluid dynamics, mainly in the early stages of aircraft design and in aerodynamic education at university level. The VLM models the lifting surfaces, such as a wing , of an aircraft as an infinitely thin sheet of discrete vortices to compute lift and induced drag .
In this model the red fluid – initially on top, and afterwards below – represents a more dense fluid and the blue fluid represents one which is less dense. The Rayleigh–Taylor instability is another application of hydrodynamic stability and also occurs between two fluids but this time the densities of the fluids are different. [ 6 ]