enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A residual block in a deep residual network. Here, the residual connection skips two layers. A residual neural network (also referred to as a residual network or ResNet) [1] is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs.

  3. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    A stacked RNN, or deep RNN, is composed of multiple RNNs stacked one above the other. Abstractly, it is structured as follows Abstractly, it is structured as follows Layer 1 has hidden vector h 1 , t {\displaystyle h_{1,t}} , parameters θ 1 {\displaystyle \theta _{1}} , and maps f θ 1 : ( x 0 , t , h 1 , t ) ↦ ( x 1 , t , h 1 , t + 1 ...

  4. Bidirectional recurrent neural networks - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_recurrent...

    Structure of RNN and BRNN [1] The principle of BRNN is to split the neurons of a regular RNN into two directions, one for positive time direction (forward states), and another for negative time direction (backward states). Those two states' output are not connected to inputs of the opposite direction states.

  5. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    A RNN (often a LSTM) where a series is decomposed into a number of scales where every scale informs the primary length between two consecutive points. A first order scale consists of a normal RNN, a second order consists of all points separated by two indices and so on. The Nth order RNN connects the first and last node.

  6. Random neural network - Wikipedia

    en.wikipedia.org/wiki/Random_neural_network

    The RNN is a recurrent model, i.e. a neural network that is allowed to have complex feedback loops. [2] A highly energy-efficient implementation of random neural networks was demonstrated by Krishna Palem et al. using the Probabilistic CMOS or PCMOS technology and was shown to be c. 226–300 times more efficient in terms of Energy-Performance ...

  7. Recursive neural network - Wikipedia

    en.wikipedia.org/wiki/Recursive_neural_network

    A recursive neural network is a kind of deep neural network created by applying the same set of weights recursively over a structured input, to produce a structured prediction over variable-size input structures, or a scalar prediction on it, by traversing a given structure in topological order.

  8. AlexNet - Wikipedia

    en.wikipedia.org/wiki/AlexNet

    AlexNet contains eight layers: the first five are convolutional layers, some of them followed by max-pooling layers, and the last three are fully connected layers. The network, except the last layer, is split into two copies, each run on one GPU. [1]

  9. Echo state network - Wikipedia

    en.wikipedia.org/wiki/Echo_state_network

    The Echo State Network (ESN) [4] belongs to the Recurrent Neural Network (RNN) family and provide their architecture and supervised learning principle. Unlike Feedforward Neural Networks, Recurrent Neural Networks are dynamic systems and not functions.