enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Piston motion equations - Wikipedia

    en.wikipedia.org/wiki/Piston_motion_equations

    piston pin acceleration (upward from crank center along cylinder bore centerline) ω {\displaystyle \omega } crank angular velocity (in the same direction/sense as crank angle A {\displaystyle A} ) Angular velocity

  3. Mean piston speed - Wikipedia

    en.wikipedia.org/wiki/Mean_piston_speed

    The mean piston speed is the average speed of the piston in a reciprocating engine. It is a function of stroke and RPM. There is a factor of 2 in the equation to account for one stroke to occur in 1/2 of a crank revolution (or alternatively: two strokes per one crank revolution) and a '60' to convert seconds from minutes in the RPM term.

  4. Slider-crank linkage - Wikipedia

    en.wikipedia.org/wiki/Slider-crank_linkage

    But in reality, the torque is maximum at crank angle of less than α = 90° from TDC for a given force on the piston. One way to calculate this angle is to find out when the Connecting rod smallend (piston) speed becomes the fastest in downward direction given a steady crank rotational velocity. Piston speed x' is expressed as:

  5. Horsepower - Wikipedia

    en.wikipedia.org/wiki/Horsepower

    Nominal horsepower = 7 × area of piston in square inches × equivalent piston speed in feet per minute/33,000. For paddle ships, the Admiralty rule was that the piston speed in feet per minute was taken as 129.7 × (stroke) 1/3.38. [28] [29] For screw steamers, the intended piston speed was used. [29]

  6. Thrust-specific fuel consumption - Wikipedia

    en.wikipedia.org/wiki/Thrust-specific_fuel...

    For example, Concorde cruised at 1354 mph, or 7.15 million feet per hour, with its engines giving an SFC of 1.195 lb/(lbf·h) (see below); this means the engines transferred 5.98 million foot pounds per pound of fuel (17.9 MJ/kg), equivalent to an SFC of 0.50 lb/(lbf·h) for a subsonic aircraft flying at 570 mph, which would be better than even ...

  7. Mean effective pressure - Wikipedia

    en.wikipedia.org/wiki/Mean_effective_pressure

    Speed has dropped out of the equation, and the only variables are the torque and displacement volume. Since the range of maximum brake mean effective pressures for good engine designs is well established, we now have a displacement-independent measure of the torque-producing capacity of an engine design – a specific torque of sorts.

  8. Compression ratio - Wikipedia

    en.wikipedia.org/wiki/Compression_ratio

    A fundamental specification for such engines, it can be measured in two different ways. The simpler way is the static compression ratio: in a reciprocating engine, this is the ratio of the volume of the cylinder when the piston is at the bottom of its stroke to that volume when the piston is at the top of its stroke. [1]

  9. Free-piston engine - Wikipedia

    en.wikipedia.org/wiki/Free-piston_engine

    Free-piston engine used as a gas generator to drive a turbine. A free-piston engine is a linear, 'crankless' internal combustion engine, in which the piston motion is not controlled by a crankshaft but determined by the interaction of forces from the combustion chamber gases, a rebound device (e.g., a piston in a closed cylinder) and a load device (e.g. a gas compressor or a linear alternator).