enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    Converting a number from scientific notation to decimal notation, first remove the × 10 n on the end, then shift the decimal separator n digits to the right (positive n) or left (negative n). The number 1.2304 × 10 6 would have its decimal separator shifted 6 digits to the right and become 1,230,400 , while −4.0321 × 10 −3 would have its ...

  3. Engineering notation - Wikipedia

    en.wikipedia.org/wiki/Engineering_notation

    Engineering notation or engineering form (also technical notation) is a version of scientific notation in which the exponent of ten is always selected to be divisible by three to match the common metric prefixes, i.e. scientific notation that aligns with powers of a thousand, for example, 531×10 3 instead of 5.31×10 5 (but on calculator displays written without the ×10 to save space).

  4. Template:Convert - Wikipedia

    en.wikipedia.org/wiki/Template:Convert

    With {{convert}}, the input can be in e-notation such as 12.3e4. This value is displayed as a power of ten, and the output is displayed in scientific notation, except that an output value satisfying 0.01 <= v < 1000 is shown as a normal number. In addition, if the output value is 1000 and sigfig=4 is used, the value is displayed as a normal number.

  5. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    For instance, using a 32-bit format, 16 bits may be used for the integer and 16 for the fraction. The eight's bit is followed by the four's bit, then the two's bit, then the one's bit. The fractional bits continue the pattern set by the integer bits. The next bit is the half's bit, then the quarter's bit, then the ⅛'s bit, and so on. For example:

  6. Normalized number - Wikipedia

    en.wikipedia.org/wiki/Normalized_number

    Thus, a real number, when written out in normalized scientific notation, is as follows: ± d 0 . d 1 d 2 d 3 ⋯ × 10 n {\displaystyle \pm d_{0}.d_{1}d_{2}d_{3}\dots \times 10^{n}} where n is an integer , d 0 , d 1 , d 2 , d 3 , … , {\textstyle d_{0},d_{1},d_{2},d_{3},\ldots ,} are the digits of the number in base 10, and d 0 {\displaystyle ...

  7. Large numbers - Wikipedia

    en.wikipedia.org/wiki/Large_numbers

    To compare numbers in scientific notation, say 5×10 4 and 2×10 5, compare the exponents first, in this case 5 > 4, so 2×10 5 > 5×10 4. If the exponents are equal, the mantissa (or coefficient) should be compared, thus 5×10 4 > 2×10 4 because 5 > 2.

  8. Parts-per notation - Wikipedia

    en.wikipedia.org/wiki/Parts-per_notation

    For example, the conversion factor between a mass fraction of 1 ppb and a mole fraction of 1 ppb is about 4.7 for the greenhouse gas CFC-11 in air (Molar mass of CFC-11 / Mean molar mass of air = 137.368 / 28.97 = 4.74). For volume fraction, the suffix "V" or "v" is sometimes appended to the parts-per notation (e.g. ppmV, ppbv, pptv).

  9. Long and short scales - Wikipedia

    en.wikipedia.org/wiki/Long_and_short_scales

    Scientific notation (for example 1 × 10 10), or its engineering notation variant (for example 10 × 10 9), or the computing variant E notation (for example 1e10). This is the most common practice among scientists and mathematicians. SI metric prefixes. For example, giga for 10 9 and tera for 10 12 can give gigawatt (10 9 W) and terawatt (10 12 ...