Search results
Results from the WOW.Com Content Network
The electric field is perpendicular, locally, to the equipotential surface of the conductor, and zero inside; its flux πa 2 ·E, by Gauss's law equals πa 2 ·σ/ε 0. Thus, σ = ε 0 E. In problems involving conductors set at known potentials, the potential away from them is obtained by solving Laplace's equation, either analytically or ...
In the differential form formulation on arbitrary space times, F = 1 / 2 F αβ dx α ∧ dx β is the electromagnetic tensor considered as a 2-form, A = A α dx α is the potential 1-form, = is the current 3-form, d is the exterior derivative, and is the Hodge star on forms defined (up to its orientation, i.e. its sign) by the ...
Gauss's law for gravity is often more convenient to work from than Newton's law. [1] The form of Gauss's law for gravity is mathematically similar to Gauss's law for electrostatics, one of Maxwell's equations. Gauss's law for gravity has the same mathematical relation to Newton's law that Gauss's law for electrostatics bears to Coulomb's law.
In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.
While Gauss's law holds for all situations, it is most useful for "by hand" calculations when high degrees of symmetry exist in the electric field. Examples include spherical and cylindrical symmetry. The SI unit of electric flux is the volt-meter (V·m), or, equivalently, newton-meter squared per coulomb (N·m 2 ·C −1).
It is an arbitrary closed surface S = ∂V (the boundary of a 3-dimensional region V) used in conjunction with Gauss's law for the corresponding field (Gauss's law, Gauss's law for magnetism, or Gauss's law for gravity) by performing a surface integral, in order to calculate the total amount of the source quantity enclosed; e.g., amount of ...
In particular, it represents lines of inverse-square law force. The extension of the above considerations confirms that where B is to H, and where J is to ρ, then it necessarily follows from Gauss's law and from the equation of continuity of charge that E is to D i.e. B parallels with E, whereas H parallels with D.
The source equations (Gauss' law for electricity and the Maxwell-Ampère law) are =. while the other two (Gauss' law for magnetism and Faraday's law) are obtained from the fact that F is the 4-curl of A, or, in other words, from the fact that the Bianchi identity holds for the electromagnetic field tensor.