enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1.

  3. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    a A + d D → c C. In this case, K eq can be defined as ratio of B to C rather than the equilibrium constant. When ⁠ B / C ⁠ > 1, B is the favored product, and the data on the Van 't Hoff plot will be in the positive region. When ⁠ B / C ⁠ < 1, C is the favored product, and the data on the Van 't Hoff plot will be in the negative region.

  4. Enoyl CoA isomerase - Wikipedia

    en.wikipedia.org/wiki/Enoyl_CoA_isomerase

    In that sense, for many higher organisms, the mitochondrial enzyme is essential for deriving maximum energy from lipids and fueling muscles. [9] If the enzyme is unclear, react it with an enoyl CoA Derivative. If the enzyme gives off more than one product, it is a multifunctional enzyme. If it gives off one product, it is solely enoyl Co-Al ...

  5. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...

  6. Equilibrium unfolding - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_unfolding

    In the less extensive technique of equilibrium unfolding, the fractions of folded and unfolded molecules (denoted as and , respectively) are measured as the solution conditions are gradually changed from those favoring the native state to those favoring the unfolded state, e.g., by adding a denaturant such as guanidinium hydrochloride or urea.

  7. Q10 (temperature coefficient) - Wikipedia

    en.wikipedia.org/wiki/Q10_(temperature_coefficient)

    The effects of temperature on enzyme activity. Top - increasing temperature increases the rate of reaction (Q 10 coefficient). Middle - the fraction of folded and functional enzyme decreases above its denaturation temperature. Bottom - consequently, an enzyme's optimal rate of reaction is at an intermediate temperature.

  8. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    The general form of the Eyring–Polanyi equation somewhat resembles the Arrhenius equation: = ‡ where is the rate constant, ‡ is the Gibbs energy of activation, is the transmission coefficient, is the Boltzmann constant, is the temperature, and is the Planck constant.

  9. Lambert W function - Wikipedia

    en.wikipedia.org/wiki/Lambert_W_function

    The notation convention chosen here (with W 0 and W −1) follows the canonical reference on the Lambert W function by Corless, Gonnet, Hare, Jeffrey and Knuth. [3]The name "product logarithm" can be understood as follows: since the inverse function of f(w) = e w is termed the logarithm, it makes sense to call the inverse "function" of the product we w the "product logarithm".