Search results
Results from the WOW.Com Content Network
Important theorems of screw theory include: the transfer principle proves that geometric calculations for points using vectors have parallel geometric calculations for lines obtained by replacing vectors with screws; [1] Chasles' theorem proves that any change between two rigid object poses can be performed by a single screw; Poinsot's theorem ...
The tension failure loads predicted by the CCD method fits experimental results over a wide range of embedment depth (e.g. 100 – 600 mm). [2] Anchor load bearing capacity provided by ACI 349 does not consider size effect, thus an underestimated value for the load-carrying capacity is obtained for large embedment depths.
Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).
Where L e is the thread engagement length, A t is the tensile stress area, D is the major diameter of the screw, and p is the pitch. This equation only holds true if the screw and female thread materials are the same. If they are not the same, then the following equations can be used to determine the additional thread length that is required: [14]
The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan).
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For a screw it is the ratio of the circular distance d in a point on the edge of the shaft moves to the linear distance d out the shaft moves. If r is the radius of the shaft, in one turn a point on the screw's rim moves a distance of 2πr, while its shaft moves linearly by the lead distance l. So the distance ratio is