Search results
Results from the WOW.Com Content Network
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss.
Regularization perspectives on support-vector machines interpret SVM as a special case of Tikhonov regularization, specifically Tikhonov regularization with the hinge loss for a loss function. This provides a theoretical framework with which to analyze SVM algorithms and compare them to other algorithms with the same goals: to generalize ...
Automated machine learning (AutoML) is the process of automating the tasks of applying machine learning to real-world problems. It is the combination of automation and ML. [1] AutoML potentially includes every stage from beginning with a raw dataset to building a machine learning model ready for deployment.
Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.
In computer architecture, predication is a feature that provides an alternative to conditional transfer of control, as implemented by conditional branch machine instructions. Predication works by having conditional ( predicated ) non-branch instructions associated with a predicate , a Boolean value used by the instruction to control whether the ...
the Tomasulo algorithm, which uses register renaming, allowing continual issuing of instructions; The task of removing data dependencies can be delegated to the compiler, which can fill in an appropriate number of NOP instructions between dependent instructions to ensure correct operation, or re-order instructions where possible.
A Tsetlin machine is a form of learning automaton collective for learning patterns using propositional logic. Ole-Christoffer Granmo created [ 1 ] and gave the method its name after Michael Lvovitch Tsetlin , who invented the Tsetlin automaton [ 2 ] and worked on Tsetlin automata collectives and games. [ 3 ]