Search results
Results from the WOW.Com Content Network
A matrix polynomial identity is a matrix polynomial equation which holds for all matrices A in a specified matrix ring M n (R). Matrix polynomials are often demonstrated in undergraduate linear algebra classes due to their relevance in showcasing properties of linear transformations represented as matrices, most notably the Cayley–Hamilton ...
This definition proceeds by establishing the characteristic polynomial independently of the determinant, and defining the determinant as the lowest order term of this polynomial. This general definition recovers the determinant for the matrix algebra = (), but also includes several further cases including the determinant of a quaternion,
The characteristic equation, also known as the determinantal equation, [1] [2] [3] is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory , the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix .
Therefore the polynomial equation p A (λ) = 0 has at most n different solutions, that is, eigenvalues of the matrix. [42] They may be complex even if the entries of A are real. According to the Cayley–Hamilton theorem, p A (A) = 0, that is, the result of substituting the matrix itself into its characteristic polynomial yields the zero matrix.
This polynomial is called the characteristic polynomial of A. Equation is called the characteristic equation or the secular equation of A. The fundamental theorem of algebra implies that the characteristic polynomial of an n-by-n matrix A, being a polynomial of degree n, can be factored into the product of n linear terms,
A polynomial matrix over a field with determinant equal to a non-zero element of that field is called unimodular, and has an inverse that is also a polynomial matrix. Note that the only scalar unimodular polynomials are polynomials of degree 0 – nonzero constants, because an inverse of an arbitrary polynomial of higher degree is a rational function.
In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A. [1] [2] It states that [3]
The resulting polynomial is not a linear function of the coordinates (its degree can be higher than 1), but it is a linear function of the fitted data values. The determinant, permanent and other immanants of a matrix are homogeneous multilinear polynomials in the elements of the matrix (and also multilinear forms in the rows or columns).