Search results
Results from the WOW.Com Content Network
Homogeneity and heterogeneity; only ' b ' is homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image.A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous ...
In statistics, homogeneity and its opposite, heterogeneity, arise in describing the properties of a dataset, or several datasets.They relate to the validity of the often convenient assumption that the statistical properties of any one part of an overall dataset are the same as any other part.
This observation that heterogeneous nucleation can occur when the rate of homogeneous nucleation is essentially zero, is often understood using classical nucleation theory. This predicts that the nucleation slows exponentially with the height of a free energy barrier ΔG*. This barrier comes from the free energy penalty of forming the surface ...
The IUPAC definition of a solid solution is a "solid in which components are compatible and form a unique phase". [3]The definition "crystal containing a second constituent which fits into and is distributed in the lattice of the host crystal" given in refs., [4] [5] is not general and, thus, is not recommended.
In descriptive set theory, a tree over a product set is said to be homogeneous if there is a system of measures < such that the following conditions hold: μ s {\displaystyle \mu _{s}} is a countably-additive measure on { t ∣ s , t ∈ T } {\displaystyle \{t\mid \langle s,t\rangle \in T\}} .
Miscibility (/ ˌ m ɪ s ɪ ˈ b ɪ l ɪ t i /) is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous mixture (a solution). Such substances are said to be miscible (etymologically equivalent to the common term "mixable").
In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar, then the function's value is multiplied by some power of this scalar; the power is called the degree of homogeneity, or simply the degree.
In other words, these are each described as a homogeneous material. A few other instances of context are: dimensional homogeneity (see below) is the quality of an equation having quantities of same units on both sides; homogeneity (in space) implies conservation of momentum ; and homogeneity in time implies conservation of energy .