enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. General relativity - Wikipedia

    en.wikipedia.org/wiki/General_relativity

    Special relativity is defined in the absence of gravity. For practical applications, it is a suitable model whenever gravity can be neglected. Bringing gravity into play, and assuming the universality of free fall motion, an analogous reasoning as in the previous section applies: there are no global inertial frames. Instead there are ...

  3. Transit-timing variation - Wikipedia

    en.wikipedia.org/wiki/Transit-timing_variation

    In tightly packed planetary systems, the gravitational pull of the planets among themselves causes one planet to accelerate and another planet to decelerate along its orbit. The acceleration causes the orbital period of each planet to change. Detecting this effect by measuring the change is known as transit-timing variations.

  4. Introduction to general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_general...

    The equivalence between gravitational and inertial effects does not constitute a complete theory of gravity. When it comes to explaining gravity near our own location on the Earth's surface, noting that our reference frame is not in free fall, so that fictitious forces are to be expected, provides a suitable explanation. But a freely falling ...

  5. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    Solutions are also used to describe the motion of binary stars around each other, and estimate their gradual loss of energy through gravitational radiation. General relativity describes the gravitational field by curved space-time; the field equations governing this curvature are nonlinear and therefore difficult to solve in a closed form.

  6. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    The table below shows comparative gravitational accelerations at the surface of the Sun, the Earth's moon, each of the planets in the Solar System and their major moons, Ceres, Pluto, and Eris. For gaseous bodies, the "surface" is taken to mean visible surface: the cloud tops of the giant planets (Jupiter, Saturn, Uranus, and Neptune), and the ...

  7. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    The Hohmann transfer orbit alone is a poor approximation for interplanetary trajectories because it neglects the planets' own gravity. Planetary gravity dominates the behavior of the spacecraft in the vicinity of a planet and in most cases Hohmann severely overestimates delta-v, and produces highly inaccurate prescriptions for burn timings.

  8. Gravitational binding energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_binding_energy

    For example, the fact that Earth is a gravitationally-bound sphere of its current size costs 2.494 21 × 10 15 kg of mass (roughly one fourth the mass of Phobos – see above for the same value in Joules), and if its atoms were sparse over an arbitrarily large volume the Earth would weigh its current mass plus 2.494 21 × 10 15 kg kilograms ...

  9. Milankovitch cycles - Wikipedia

    en.wikipedia.org/wiki/Milankovitch_cycles

    Eccentricity varies primarily due to the gravitational pull of Jupiter and Saturn. The semi-major axis of the orbital ellipse, however, remains unchanged; according to perturbation theory , which computes the evolution of the orbit, the semi-major axis is invariant .