Search results
Results from the WOW.Com Content Network
find_character(string,char) returns integer Description Returns the position of the start of the first occurrence of the character char in string. If the character is not found most of these routines return an invalid index value – -1 where indexes are 0-based, 0 where they are 1-based – or some value to be interpreted as Boolean FALSE.
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...
The enclosed text becomes a string literal, which Python usually ignores (except when it is the first statement in the body of a module, class or function; see docstring). Elixir The above trick used in Python also works in Elixir, but the compiler will throw a warning if it spots this.
The difference between the two algorithms consists in that the optimal string alignment algorithm computes the number of edit operations needed to make the strings equal under the condition that no substring is edited more than once, whereas the second one presents no such restriction. Take for example the edit distance between CA and ABC.
For example, in Python, raw strings are preceded by an r or R – compare 'C:\\Windows' with r'C:\Windows' (though, a Python raw string cannot end in an odd number of backslashes). Python 2 also distinguishes two types of strings: 8-bit ASCII ("bytes") strings (the default), explicitly indicated with a b or B prefix, and Unicode strings ...
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x)
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
AST differencing, or for short tree differencing, consists of computing the list of differences between two ASTs. [1] This list of differences is typically called an edit script. The edit script directly refers to the AST of the code. For instance, an edit action may result in the addition of a new AST node representing a function.