Search results
Results from the WOW.Com Content Network
The urea cycle converts highly toxic ammonia to urea for excretion. [1] This cycle was the first metabolic cycle to be discovered by Hans Krebs and Kurt Henseleit in 1932, [2] [3] [4] five years before the discovery of the TCA cycle. The urea cycle was described in more detail later on by Ratner and Cohen.
The structure of the molecule of urea is O=C(−NH 2) 2.The urea molecule is planar when in a solid crystal because of sp 2 hybridization of the N orbitals. [8] [9] It is non-planar with C 2 symmetry when in the gas phase [10] or in aqueous solution, [9] with C–N–H and H–N–H bond angles that are intermediate between the trigonal planar angle of 120° and the tetrahedral angle of 109.5°.
The Wöhler synthesis is the conversion of ammonium cyanate into urea. This chemical reaction was described in 1828 by Friedrich Wöhler. [1] It is often cited as the starting point of modern organic chemistry. Although the Wöhler reaction concerns the conversion of ammonium cyanate, this salt appears only as an
Ammonia is toxic to the human system, and enzymes convert it to urea or uric acid by addition of carbon dioxide molecules (which is not considered a deamination process) in the urea cycle, which also takes place in the liver. Urea and uric acid can safely diffuse into the blood and then be excreted in urine.
The liver converts ammonia to urea through a series of reactions known as the urea cycle. Liver dysfunction, such as that seen in cirrhosis, may lead to elevated amounts of ammonia in the blood (hyperammonemia). Likewise, defects in the enzymes responsible for the urea cycle, such as ornithine transcarbamylase, lead to hyperammonemia.
The excretion of urea is called ureotelism. Land animals, mainly amphibians and mammals, convert ammonia into urea, a process which occurs in the liver and kidney. These animals are called ureotelic. [3] Urea is a less toxic compound than ammonia; two nitrogen atoms are eliminated through it and less water is needed for its excretion.
Ammonium carbamate is an intermediate in the industrial production of urea. A typical industrial plant that makes urea can produce up to 4000 tons a day. [15] in this reactor and can then be dehydrated to urea according to the following equation: [14] [NH 2 CO 2][NH 4] → (NH 2) 2 CO + H 2 O
urea is not the same as uric acid, though both are end products of the purine nucleotide cycle, from ammonia and nucleotides respectively.) When the skeletal muscles are at rest (ADP<ATP), ammonia (NH 3) combines with glutamate to produce glutamine, which is an energy-consuming step, and the glutamine enters the blood. [15] [11]