Search results
Results from the WOW.Com Content Network
The Reynolds number is the ratio of inertial forces to viscous forces within a fluid that is subjected to relative internal movement due to different fluid velocities. A region where these forces change behavior is known as a boundary layer, such as the bounding surface in the interior of a pipe.
The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
A vessel of diameter of 10 µm with a flow of 1 millimetre/second, viscosity of 0.02 poise for blood, density of 1 g/cm 3 and a heart rate of 2 Hz, will have a Reynolds number of 0.005 and a Womersley number of 0.0126. At these small Reynolds and Womersley numbers, the viscous effects of the fluid become predominant.
The Strouhal number depends on the Reynolds number, [5] but a value of 0.22 is commonly used. [6] As the unit is dimensionless, any set of units can be used for the variables. Over four orders of magnitude in Reynolds number, from 10 2 to 10 5 , the Strouhal number varies only between 0.18 and 0.22.
The Reynolds number is a dimensionless quantity which characterises the magnitude of inertial effects compared to the magnitude of viscous effects. A low Reynolds number (Re ≪ 1) indicates that viscous forces are very strong compared to inertial forces.
Beyond a certain Reynolds number there is the onset of turbulence. Circular Couette flow has wide applications ranging from desalination to magnetohydrodynamics and also in viscosimetric analysis. Different flow regimes have been categorized over the years including twisted Taylor vortices and wavy outflow boundaries.
geology, fluid mechanics, porous media (buoyant versus capillary forces, similar to the Eötvös number) [10] Brinkman number: Br = heat transfer, fluid mechanics (conduction from a wall to a viscous fluid) Brownell–Katz number: N BK