Search results
Results from the WOW.Com Content Network
Cohen's kappa measures the agreement between two raters who each classify N items into C mutually exclusive categories. The definition of is =, where p o is the relative observed agreement among raters, and p e is the hypothetical probability of chance agreement, using the observed data to calculate the probabilities of each observer randomly selecting each category.
This number can be seen as equal to the one of the first definition, independently of any of the formulas below to compute it: if in each of the n factors of the power (1 + X) n one temporarily labels the term X with an index i (running from 1 to n), then each subset of k indices gives after expansion a contribution X k, and the coefficient of ...
for k = 0, 1, 2, ..., n, where =!! ()! is the binomial coefficient. The formula can be understood as follows: p k q n−k is the probability of obtaining the sequence of n independent Bernoulli trials in which k trials are "successes" and the remaining n − k trials
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
Then, at each of the n measured points, the weight of the original value on the linear combination that makes up the predicted value is just 1/k. Thus, the trace of the hat matrix is n/k. Thus the smooth costs n/k effective degrees of freedom. As another example, consider the existence of nearly duplicated observations.
For k > 1, the density function tends to zero as x approaches zero from above, increases until its mode and decreases after it. The density function has infinite negative slope at x = 0 if 0 < k < 1, infinite positive slope at x = 0 if 1 < k < 2 and null slope at x = 0 if k > 2. For k = 1 the density has a finite negative slope at x = 0.
Sturges's rule [1] is a method to choose the number of bins for a histogram.Given observations, Sturges's rule suggests using ^ = + bins in the histogram. This rule is widely employed in data analysis software including Python [2] and R, where it is the default bin selection method.
In statistics, a k-statistic is a minimum-variance unbiased estimator of a cumulant. [1] [2] References External links. k-Statistic on ...