enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convex cone - Wikipedia

    en.wikipedia.org/wiki/Convex_cone

    An affine convex cone is the set resulting from applying an affine transformation to a convex cone. [8] A common example is translating a convex cone by a point p: p + C. Technically, such transformations can produce non-cones. For example, unless p = 0, p + C is not a linear cone. However, it is still called an affine convex cone.

  3. Cone - Wikipedia

    en.wikipedia.org/wiki/Cone

    The definition of a cone may be extended to higher dimensions; see convex cone. In this case, one says that a convex set C in the real vector space R n {\displaystyle \mathbb {R} ^{n}} is a cone (with apex at the origin) if for every vector x in C and every nonnegative real number a , the vector ax is in C . [ 2 ]

  4. Conic optimization - Wikipedia

    en.wikipedia.org/wiki/Conic_optimization

    Conic optimization is a subfield of convex optimization that studies problems consisting of minimizing a convex function over the intersection of an affine subspace and a convex cone. The class of conic optimization problems includes some of the most well known classes of convex optimization problems, namely linear and semidefinite programming.

  5. Invariant convex cone - Wikipedia

    en.wikipedia.org/wiki/Invariant_convex_cone

    In mathematics, an invariant convex cone is a closed convex cone in a Lie algebra of a connected Lie group that is invariant under inner automorphisms. The study of such cones was initiated by Ernest Vinberg and Bertram Kostant .

  6. Dual cone and polar cone - Wikipedia

    en.wikipedia.org/wiki/Dual_cone_and_polar_cone

    A cone C in a vector space X is said to be self-dual if X can be equipped with an inner product ⋅,⋅ such that the internal dual cone relative to this inner product is equal to C. [3] Those authors who define the dual cone as the internal dual cone in a real Hilbert space usually say that a cone is self-dual if it is equal to its internal dual.

  7. Recession cone - Wikipedia

    en.wikipedia.org/wiki/Recession_cone

    In mathematics, especially convex analysis, the recession cone of a set is a cone containing all vectors such that recedes in that direction. That is, the set extends outward in all the directions given by the recession cone.

  8. Second-order cone programming - Wikipedia

    en.wikipedia.org/wiki/Second-order_cone_programming

    A second-order cone program (SOCP) is a convex optimization problem of the form minimize ...

  9. Convex set - Wikipedia

    en.wikipedia.org/wiki/Convex_set

    The convex-hull operation is needed for the set of convex sets to form a lattice, in which the "join" operation is the convex hull of the union of two convex sets ⁡ ⁡ = ⁡ = ⁡ (⁡ ⁡ ()). The intersection of any collection of convex sets is itself convex, so the convex subsets of a (real or complex) vector space form a complete lattice .