Search results
Results from the WOW.Com Content Network
Typical stress strain curve for a drained dilatant soil. Shear strength is a term used in soil mechanics to describe the magnitude of the shear stress that a soil can sustain. . The shear resistance of soil is a result of friction and interlocking of particles, and possibly cementation or bonding of particle contac
Cohesion is the component of shear strength of a rock or soil that is independent of interparticle friction. In soils, true cohesion is caused by following: Electrostatic forces in stiff overconsolidated clays (which may be lost through weathering) Cementing by Fe 2 O 3, Ca CO 3, Na Cl, etc. There can also be apparent cohesion. This is caused by:
This theory, which considers the soil to be in a state of plastic equilibrium, makes the assumptions that the soil is homogeneous, isotropic and has internal friction. The pressure exerted by soil against the wall is referred to as active pressure. The resistance offered by the soil to an object pushing against it is referred to as "passive ...
The angle of internal friction is thus closely related to the maximum stable slope angle, often called the angle of repose. But in addition to friction, soil derives significant shear resistance from interlocking of grains. If the grains are densely packed, the grains tend to spread apart from each other as they are subject to shear strain.
The relationship between dilation and internal friction is typically illustrated by the sawtooth model of dilatancy where the angle of dilation is analogous to the angle made by the teeth to the horizontal. Such a model can be used to infer that the observed friction angle is equal to the dilation angle plus the friction angle for zero dilation.
A direct shear test is a laboratory or field test used by geotechnical engineers to measure the shear strength properties of soil [1] [2] or rock [2] material, or of discontinuities in soil or rock masses. [2] [3] The U.S. and U.K. standards defining how the test should be performed are ASTM D 3080, AASHTO T236 and BS 1377-7:1990, respectively.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
An example of lateral earth pressure overturning a retaining wall. The lateral earth pressure is the pressure that soil exerts in the horizontal direction. It is important because it affects the consolidation behavior and strength of the soil and because it is considered in the design of geotechnical engineering structures such as retaining walls, basements, tunnels, deep foundations and ...