enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Acid-growth hypothesis - Wikipedia

    en.wikipedia.org/wiki/Acid-growth_hypothesis

    The acid-growth hypothesis is a theory that explains the expansion dynamics of cells and organs in plants. It was originally proposed by Achim Hager and Robert Cleland in 1971. [1] [2] They hypothesized that the naturally occurring plant hormone, auxin (indole-3-acetic acid, IAA), induces H + proton extrusion into the apoplast.

  3. Acid growth - Wikipedia

    en.wikipedia.org/wiki/Acid_growth

    Acid growth refers to the ability of plant cells and plant cell walls to elongate or expand quickly at low (acidic) pH. The cell wall needs to be modified in order to maintain the turgor pressure. This modification is controlled by plant hormones like auxin. Auxin also controls the expression of some cell wall genes. [1]

  4. Citric acid cycle - Wikipedia

    en.wikipedia.org/wiki/Citric_acid_cycle

    Overview of the citric acid cycle. The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.

  5. Aerobic organism - Wikipedia

    en.wikipedia.org/wiki/Aerobic_organism

    This equation is a summary of what happens in three series of biochemical reactions: glycolysis, the Krebs cycle (also known as the Citric acid cycle), and oxidative phosphorylation. C 6 H 12 O 6 + 6 O 2 + 38 ADP + 38 phosphate → 6 CO 2 + 44 H 2 O + 38 ATP. In Oxidative phosphorylation, ATP is synthesized from ADP and a phosphate using ATP ...

  6. Pasteur effect - Wikipedia

    en.wikipedia.org/wiki/Pasteur_effect

    If the concentration of oxygen increases, pyruvate is instead converted to acetyl CoA, used in the citric acid cycle, and undergoes oxidative phosphorylation. Per glucose, 10 NADH and 2 FADH 2 are produced in cellular respiration for a significant amount of proton pumping to produce a proton gradient utilized by ATP Synthase. While the exact ...

  7. Malate synthase - Wikipedia

    en.wikipedia.org/wiki/Malate_synthase

    The citric acid cycle (also known as the tricarboxylic acid cycle or the Krebs cycle) is used by aerobic organisms to produce energy via the oxidation of acetyl-CoA, which is derived from pyruvate (a product of glycolysis). The citric acid cycle accepts acetyl-CoA and metabolizes it to form carbon dioxide.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Soil respiration - Wikipedia

    en.wikipedia.org/wiki/Soil_respiration

    The tricarboxylic acid (TCA) cycle – or citric acid cycle – is an important step in cellular respiration. In the TCA cycle, a six carbon sugar is oxidized. [1] This oxidation produces the CO 2 and H 2 O from the sugar. Plants, fungi, animals and bacteria all use this cycle to convert organic compounds to energy.