Search results
Results from the WOW.Com Content Network
In chemistry, a reaction coordinate [1] is an abstract one-dimensional coordinate chosen to represent progress along a reaction pathway. Where possible it is usually a geometric parameter that changes during the conversion of one or more molecular entities, such as bond length or bond angle. For example, in the homolytic dissociation of ...
The two dimensional Manhattan distance has "circles" i.e. level sets in the form of squares, with sides of length √ 2 r, oriented at an angle of π/4 (45°) to the coordinate axes, so the planar Chebyshev distance can be viewed as equivalent by rotation and scaling to (i.e. a linear transformation of) the planar Manhattan distance.
In the theory of many-particle systems, Jacobi coordinates often are used to simplify the mathematical formulation. These coordinates are particularly common in treating polyatomic molecules and chemical reactions, [3] and in celestial mechanics. [4] An algorithm for generating the Jacobi coordinates for N bodies may be based upon binary trees. [5]
If these are ω 1 and ω 2 then all points not in the planes rotate through an angle between ω 1 and ω 2. Rotations in four dimensions about a fixed point have six degrees of freedom. A four-dimensional direct motion in general position is a rotation about certain point (as in all even Euclidean dimensions), but screw operations exist also.
In mathematics and its applications, particularly to phase transitions in matter, a Stefan problem is a particular kind of boundary value problem for a system of partial differential equations (PDE), in which the boundary between the phases can move with time.
Each Plücker coordinate appears in two of the four equations, each time multiplying a different variable; and as at least one of the coordinates is nonzero, we are guaranteed non-vacuous equations for two distinct planes intersecting in L. Thus the Plücker coordinates of a line determine that line uniquely, and the map α is an injection.
In Lie theory, a one-dimensional subspace of a Lie algebra is mapped to a one-parameter group under the Lie group–Lie algebra correspondence. [3] More generally, a ring is a length-one module over itself. Similarly, the projective line over a ring is a one-dimensional space over the ring.
Another way to put it is that the points of n-dimensional projective space are the 1-dimensional vector subspaces, which may be visualized as the lines through the origin in K n+1. [10] Also the n - (vector) dimensional subspaces of K n+1 represent the (n − 1)- (geometric) dimensional hyperplanes of projective n-space over K, i.e., PG(n, K).