Search results
Results from the WOW.Com Content Network
Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision , where a small portion of the data is tagged, and self-supervision .
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
The machine learning and artificial intelligence solutions may be classified into two categories: 'supervised' and 'unsupervised' learning. These methods seek for accounts, customers, suppliers, etc. that behave 'unusually' in order to output suspicion scores, rules or visual anomalies, depending on the method. [8]
Semi-supervised learning combines this information to surpass the classification performance that can be obtained either by discarding the unlabeled data and doing supervised learning or by discarding the labels and doing unsupervised learning. Semi-supervised learning may refer to either transductive learning or inductive learning. [1]
An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.
A self-organizing map (SOM) or self-organizing feature map (SOFM) is an unsupervised machine learning technique used to produce a low-dimensional (typically two-dimensional) representation of a higher-dimensional data set while preserving the topological structure of the data.
A point q is reachable from p if there is a path p 1, ..., p n with p 1 = p and p n = q, where each p i+1 is directly reachable from p i. Note that this implies that the initial point and all points on the path must be core points, with the possible exception of q. All points not reachable from any other point are outliers or noise points.
Competitive learning is a form of unsupervised learning in artificial neural networks, in which nodes compete for the right to respond to a subset of the input data. [ 1 ] [ 2 ] A variant of Hebbian learning , competitive learning works by increasing the specialization of each node in the network.