Search results
Results from the WOW.Com Content Network
The Holomorphic Embedding Load-flow Method (HELM) [note 1] is a solution method for the power-flow equations of electrical power systems. Its main features are that it is direct (that is, non-iterative) and that it mathematically guarantees a consistent selection of the correct operative branch of the multivalued problem, also signalling the condition of voltage collapse when there is no solution.
To use a finite difference method to approximate the solution to a problem, one must first discretize the problem's domain. This is usually done by dividing the domain into a uniform grid (see image). This means that finite-difference methods produce sets of discrete numerical approximations to the derivative, often in a "time-stepping" manner.
Finite-difference time-domain (FDTD) or Yee's method (named after the Chinese American applied mathematician Kane S. Yee, born 1934) is a numerical analysis technique used for modeling computational electrodynamics (finding approximate solutions to the associated system of differential equations).
The method shares many similarities to the finite-difference time-domain (FDTD) method, so much so that the literature on FDTD can be directly applied. The method works by transforming Maxwell's equations (or other partial differential equation) for sources and fields at a constant frequency into matrix form A x = b {\displaystyle Ax=b} .
In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + h / 2 ) and f ′(x − h / 2 ) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:
The name is in analogy with quadrature, meaning numerical integration, where weighted sums are used in methods such as Simpson's method or the Trapezoidal rule. There are various methods for determining the weight coefficients, for example, the Savitzky–Golay filter. Differential quadrature is used to solve partial differential equations ...
In computational fluid dynamics, the MacCormack method (/məˈkɔːrmæk ˈmɛθəd/) is a widely used discretization scheme for the numerical solution of hyperbolic partial differential equations. This second-order finite difference method was introduced by Robert W. MacCormack in 1969. [ 1 ]
The linearized augmented-plane-wave method (LAPW) is an implementation of Kohn-Sham density functional theory (DFT) adapted to periodic materials. [1] [2] [3] It typically goes along with the treatment of both valence and core electrons on the same footing in the context of DFT and the treatment of the full potential and charge density without any shape approximation.