enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second-order cone programming - Wikipedia

    en.wikipedia.org/wiki/Second-order_cone_programming

    The "second-order cone" in SOCP arises from the constraints, which are equivalent to requiring the affine function (+, +) to lie in the second-order cone in +. [ 1 ] SOCPs can be solved by interior point methods [ 2 ] and in general, can be solved more efficiently than semidefinite programming (SDP) problems. [ 3 ]

  3. PROPT - Wikipedia

    en.wikipedia.org/wiki/PROPT

    Source transformation to turn user-supplied expressions into MATLAB code for the cost function and constraint function that are passed to a Nonlinear programming solver in TOMLAB. The source transformation package TomSym automatically generates first and second order derivatives.

  4. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    To see this, note that the two constraints x 1 (x 1 − 1) ≤ 0 and x 1 (x 1 − 1) ≥ 0 are equivalent to the constraint x 1 (x 1 − 1) = 0, which is in turn equivalent to the constraint x 1 ∈ {0, 1}. Hence, any 0–1 integer program (in which all variables have to be either 0 or 1) can be formulated as a quadratically constrained ...

  5. Conic optimization - Wikipedia

    en.wikipedia.org/wiki/Conic_optimization

    Examples of include the positive orthant + = {:}, positive semidefinite matrices +, and the second-order cone {(,): ‖ ‖}. Often f {\displaystyle f\ } is a linear function, in which case the conic optimization problem reduces to a linear program , a semidefinite program , and a second order cone program , respectively.

  6. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    In LP, the objective and constraint functions are all linear. Quadratic programming are the next-simplest. In QP, the constraints are all linear, but the objective may be a convex quadratic function. Second order cone programming are more general. Semidefinite programming are more general. Conic optimization are even more general - see figure ...

  7. GPOPS-II - Wikipedia

    en.wikipedia.org/wiki/GPOPS-II

    GPOPS-II [3] is designed to solve multiple-phase optimal control problems of the following mathematical form (where is the number of phases): = ((), …, ()) subject to the dynamic constraints

  8. Method of moving asymptotes - Wikipedia

    en.wikipedia.org/wiki/Method_of_moving_asymptotes

    The Method of Moving Asymptotes functions as an iterative scheme. The key idea behind MMA is to approximate the original non-linear constraints and objective function with a simpler, convex approximation. This approximation is represented by linear constraints and a convex objective function. [2]

  9. Differential dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Differential_Dynamic...

    Differential dynamic programming is a second-order algorithm like Newton's method. It therefore takes large steps toward the minimum and often requires regularization and/or line-search to achieve convergence.