Search results
Results from the WOW.Com Content Network
An example of such an enantiomer is the sedative thalidomide, which was sold in a number of countries around the world from 1957 until 1961. It was withdrawn from the market when it was found to cause birth defects. One enantiomer caused the desirable sedative effects, while the other, unavoidably [23] present in equal quantities, caused birth ...
One enantiomer of a drug may have a desired beneficial effect while the other may cause serious and undesired side effects, or sometimes even beneficial but entirely different effects. [1] The desired enantiomer is known as an eutomer while the undesired enantiomer is known as the distomer. [2]
In most cases where a chiral compound is biologically active, one enantiomer is more active than the other. The eudysmic ratio is the ratio of activity between the two. A eudysmic ratio significantly differing from 1 means that they are statistically different in activity. Eudisimic ratio (ER) reflects the degree of enantioselectivity of the ...
The (R) enantiomer of thalidomide is effective against morning sickness, while the (S) enantiomer is teratogenic, causing birth defects. Since the drug racemizes, the drug cannot be considered safe for use by women of child-bearing age, [ 12 ] and its use is tightly controlled when used for treating other illness.
As the l-isomer of glucose, it is the enantiomer of the more common d-glucose. l -Glucose does not occur naturally in living organisms, but can be synthesized in the laboratory. l -Glucose is indistinguishable in taste from d -glucose, [ 1 ] but cannot be used by living organisms as a source of energy because it cannot be phosphorylated by ...
The drug was withdrawn from world market when it became evident that the use in pregnancy causes phocomelia (clinical conditions where babies are born with deformed hand and limbs). Later in late 1970s studies indicated that the (R)- enantiomer is an effective sedative, the (S)-enantiomer harbors teratogenic effect and causes fetal abnormalities.
This has led to informal use the two terms as interchangeable, especially because optical purity was the traditional way of measuring enantiomeric excess. However, other methods such as chiral column chromatography and NMR spectroscopy can now be used for measuring the amount of each enantiomer individually.
Until 1951, it was not possible to obtain the absolute configuration of chiral compounds. It was at some time arbitrarily decided that (+)-glyceraldehyde was the D-enantiomer. [4] [5] The configuration of other chiral compounds was then related to that of (+)-glyceraldehyde by sequences of chemical reactions.