enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    As listed above, clustering algorithms can be categorized based on their cluster model. The following overview will only list the most prominent examples of clustering algorithms, as there are possibly over 100 published clustering algorithms. Not all provide models for their clusters and can thus not easily be categorized.

  3. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning. In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

  4. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/.../Automatic_Clustering_Algorithms

    Unlike partitioning and hierarchical methods, density-based clustering algorithms are able to find clusters of any arbitrary shape, not only spheres. The density-based clustering algorithm uses autonomous machine learning that identifies patterns regarding geographical location and distance to a particular number of neighbors.

  5. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Cluster analysis, a fundamental task in data mining and machine learning, involves grouping a set of data points into clusters based on their similarity. k-means clustering is a popular algorithm used for partitioning data into k clusters, where each cluster is represented by its centroid.

  6. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay includes simple examples of the EM algorithm such as clustering using the soft k-means algorithm, and emphasizes the variational view of the EM algorithm, as described in Chapter 33.7 of version 7.2 (fourth edition).

  7. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Data compression aims to reduce the size of data files, enhancing storage efficiency and speeding up data transmission. K-means clustering, an unsupervised machine learning algorithm, is employed to partition a dataset into a specified number of clusters, k, each represented by the centroid of its points. This process condenses extensive ...

  8. Statistical classification - Wikipedia

    en.wikipedia.org/wiki/Statistical_classification

    Algorithms with this basic setup are known as linear classifiers. What distinguishes them is the procedure for determining (training) the optimal weights/coefficients and the way that the score is interpreted. Examples of such algorithms include Logistic regression – Statistical model for a binary dependent variable

  9. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    The naive version of the algorithm is easy to implement by computing the distances from the test example to all stored examples, but it is computationally intensive for large training sets. Using an approximate nearest neighbor search algorithm makes k- NN computationally tractable even for large data sets.