enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deterministic finite automaton - Wikipedia

    en.wikipedia.org/wiki/Deterministic_finite_automaton

    In the theory of computation, a branch of theoretical computer science, a deterministic finite automaton (DFA)—also known as deterministic finite acceptor (DFA), deterministic finite-state machine (DFSM), or deterministic finite-state automaton (DFSA)—is a finite-state machine that accepts or rejects a given string of symbols, by running ...

  3. Differentiable programming - Wikipedia

    en.wikipedia.org/wiki/Differentiable_programming

    Differentiable programming has found use in a wide variety of areas, particularly scientific computing and machine learning. [5] One of the early proposals to adopt such a framework in a systematic fashion to improve upon learning algorithms was made by the Advanced Concepts Team at the European Space Agency in early 2016.

  4. Google JAX - Wikipedia

    en.wikipedia.org/wiki/Google_JAX

    JAX is a machine learning framework for transforming numerical functions. [2] [3] [4] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and OpenXLA's XLA (Accelerated Linear Algebra).

  5. Revoscalepy - Wikipedia

    en.wikipedia.org/wiki/Revoscalepy

    The package contains functions for creating linear model, logistic regression, random forest, decision tree and boosted decision tree, in addition to some summary functions for inspecting data. [2] Other machine learning algorithms such as neural network are provided in microsoftml, a separate package that is the Python version of MicrosoftML. [3]

  6. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  7. Learnable function class - Wikipedia

    en.wikipedia.org/wiki/Learnable_function_class

    Specifically, function classes that ensure the existence of a sequence {^} that satisfies are known as learnable classes. [ 1 ] It is worth noting that at least for supervised classification and regression problems, if a function class is learnable, then the empirical risk minimization automatically satisfies ( 1 ). [ 2 ]

  8. Chainer - Wikipedia

    en.wikipedia.org/wiki/Chainer

    Chainer was the first deep learning framework to introduce the define-by-run approach. [10] [11] The traditional procedure to train a network was in two phases: define the fixed connections between mathematical operations (such as matrix multiplication and nonlinear activations) in the network, and then run the actual training calculation. This ...

  9. Hyper-heuristic - Wikipedia

    en.wikipedia.org/wiki/Hyper-heuristic

    A hyper-heuristic is a heuristic search method that seeks to automate, often by the incorporation of machine learning techniques, the process of selecting, combining, generating or adapting several simpler heuristics (or components of such heuristics) to efficiently solve computational search problems. One of the motivations for studying hyper ...