Search results
Results from the WOW.Com Content Network
In a fission nuclear reactor, uranium-238 can be used to generate plutonium-239, which itself can be used in a nuclear weapon or as a nuclear-reactor fuel supply. In a typical nuclear reactor, up to one-third of the generated power comes from the fission of 239 Pu, which is not supplied as a fuel to the reactor, but rather, produced from 238 U. [5] A certain amount of production of 239
The four most common modes of radioactive decay are: alpha decay, beta decay, inverse beta decay (considered as both positron emission and electron capture), and isomeric transition. Of these decay processes, only alpha decay (fission of a helium-4 nucleus) changes the atomic mass number ( A ) of the nucleus, and always decreases it by four.
234 U occurs in natural uranium as an indirect decay product of uranium-238, but makes up only 55 parts per million of the uranium because its half-life of 245,500 years is only about 1/18,000 that of 238 U. The path of production of 234 U is this: 238 U alpha decays to thorium-234. Next, with a short half-life, 234 Th beta decays to ...
The decay-chain of uranium-238, which contains radium-226 as an intermediate decay product. 226 Ra occurs in the decay chain of uranium-238 (238 U), which is the most common naturally occurring isotope of uranium. It undergoes alpha decay to radon-222, which is also radioactive; the decay chain ultimately terminates at lead-206.
Unstable isotopes decay through various radioactive decay pathways, most commonly alpha decay, beta decay, or electron capture. Many rare types of decay, such as spontaneous fission or cluster decay, are known. (See Radioactive decay for details.) [citation needed] Of the first 82 elements in the periodic table, 80 have isotopes considered to ...
Uranium–uranium dating is a radiometric dating technique which compares two isotopes of uranium (U) in a sample: uranium-234 (234 U) and uranium-238 (238 U). It is one of several radiometric dating techniques exploiting the uranium radioactive decay series, in which 238 U undergoes 14 alpha and beta decay events on the way to the stable isotope 206 Pb.
234 Th is the daughter of the parent 238 U. 234m Pa (234 metastable) is the granddaughter of 238 U. These might also be referred to as the daughter products of 238 U. [1] Decay products are important in understanding radioactive decay and the management of radioactive waste. For elements above lead in atomic number, the decay chain typically ...
The uranium-238 series is a series of α (N and Z less 2) and β− decays (N less 1, Z plus 1) to nuclides that are successively deeper into the valley of stability. The series terminates at lead-206, a stable nuclide at the bottom of the valley of stability. Radioactive decay often proceeds via a sequence of steps known as a decay chain.