enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    Several earlier 16-bit floating point formats have existed including that of Hitachi's HD61810 DSP of 1982 (a 4-bit exponent and a 12-bit mantissa), [2] Thomas J. Scott's WIF of 1991 (5 exponent bits, 10 mantissa bits) [3] and the 3dfx Voodoo Graphics processor of 1995 (same as Hitachi).

  3. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    On a typical computer system, a double-precision (64-bit) binary floating-point number has a coefficient of 53 bits (including 1 implied bit), an exponent of 11 bits, and 1 sign bit. Since 2 10 = 1024, the complete range of the positive normal floating-point numbers in this format is from 2 −1022 ≈ 2 × 10 −308 to approximately 2 1024 ≈ ...

  4. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    The exponents 000 16 and 7ff 16 have a special meaning: . 00000000000 2 =000 16 is used to represent a signed zero (if F = 0) and subnormal numbers (if F ≠ 0); and; 11111111111 2 =7ff 16 is used to represent ∞ (if F = 0) and NaNs (if F ≠ 0),

  5. Extended precision - Wikipedia

    en.wikipedia.org/wiki/Extended_precision

    Exponent Significand Meaning bits 78–64 bit 63 bits 62–0; all 0: 0: 0: Zero. The sign bit gives the sign of the zero, which usually is meaningless. non-zero: Denormal. The value is (−1) s × m × 2 −16382 1: anything: Pseudo Denormal. The 80387 and later properly interpret this value but will not generate it. The value is (−1) s × m ...

  6. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied. Languages that support a rational data type usually allow the construction of such a value from two integers, instead of a base-2 floating-point number, due to the loss of exactness the latter would cause.

  7. Significand - Wikipedia

    en.wikipedia.org/wiki/Significand

    The significand [1] (also coefficient, [1] sometimes argument, [2] or more ambiguously mantissa, [3] fraction, [4] [5] [nb 1] or characteristic [6] [3]) is the first (left) part of a number in scientific notation or related concepts in floating-point representation, consisting of its significant digits. For negative numbers, it does not include ...

  8. Math library - Wikipedia

    en.wikipedia.org/wiki/Math_library

    Logarithm in base 2 is relatively straightforward, as the integer part k is already in the floating-point exponent; a preliminary range reduction is accordingly performed, yielding k. The mantissa x (where log2( x ) is between -1/2 and 1/2) is then compared to a table and intervals for further reduction into a z with known log2 and an in-range ...

  9. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    Unlike binary floating-point, numbers are not necessarily normalized; values with few significant digits have multiple possible representations: 1×10 2 =0.1×10 3 =0.01×10 4, etc. When the significand is zero, the exponent can be any value at all.