Search results
Results from the WOW.Com Content Network
Cohen's kappa measures the agreement between two raters who each classify N items into C mutually exclusive categories. The definition of is =, where p o is the relative observed agreement among raters, and p e is the hypothetical probability of chance agreement, using the observed data to calculate the probabilities of each observer randomly selecting each category.
Probability density functions of the order statistics for a sample of size n = 5 from an exponential distribution with unit scale parameter. In statistics, the kth order statistic of a statistical sample is equal to its kth-smallest value. [1]
In statistics, a k-statistic is a minimum-variance unbiased estimator of a cumulant. [1] [2] References External links. k-Statistic on ...
Since the probabilities must satisfy p 1 + ⋅⋅⋅ + p k = 1, it is natural to interpret E[X] as a weighted average of the x i values, with weights given by their probabilities p i. In the special case that all possible outcomes are equiprobable (that is, p 1 = ⋅⋅⋅ = p k), the weighted average is given by the standard average. In the ...
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. Kolmogorov–Smirnov test (K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions that can be used to test whether a sample came from a ...
for k = 0, 1, 2, ..., n, where =!! ()! is the binomial coefficient. The formula can be understood as follows: p k q n−k is the probability of obtaining the sequence of n independent Bernoulli trials in which k trials are "successes" and the remaining n − k trials
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
The power of k is because moments scale as , meaning that () = (): they are homogeneous functions of degree k, thus the standardized moment is scale invariant. This can also be understood as being because moments have dimension; in the above ratio defining standardized moments, the dimensions cancel, so they are dimensionless numbers .