Search results
Results from the WOW.Com Content Network
Common quantum logic gates by name (including abbreviation), circuit form(s) and the corresponding unitary matrices. In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits.
In gate-based quantum computing, various sets of quantum logic gates are commonly used to express quantum operations. The following tables list several unitary quantum logic gates, together with their common name, how they are represented, and some of their properties.
Quantum logic gates, in contrast to classical logic gates, are always reversible. One requires a special kind of reversible function, namely a unitary mapping, that is, a linear transformation of a complex inner product space that preserves the Hermitian inner product.
The classical analog of the CNOT gate is a reversible XOR gate. How the CNOT gate can be used (with Hadamard gates) in a computation.. In computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer.
Modern philosophers reject quantum logic as a basis for reasoning, because it lacks a material conditional; a common alternative is the system of linear logic, of which quantum logic is a fragment. Mathematically, quantum logic is formulated by weakening the distributive law for a Boolean algebra, resulting in an orthocomplemented lattice.
Qubits are used in quantum circuits and quantum algorithms composed of quantum logic gates to solve computational problems, where they are used for input/output and intermediate computations. A physical qubit is a physical device that behaves as a two-state quantum system, used as a component of a computer system.
QRAM combines quantum logic gates such as the CNOT gate, V gate, and V+ gate to perform logical operations like AND, OR, NOT, and NOR within quantum systems, harnessing quantum properties like ...
Reciprocal Quantum Logic (RQL) was developed to fix some of the problems of RSFQ logic. RQL uses reciprocal pairs of SFQ pulses to encode a logical '1'. Both power and clock are provided by multi-phase alternating current signals. RQL gates do not use resistors to distribute power and thus dissipate negligible static power. [17]