Search results
Results from the WOW.Com Content Network
Unstable modes have height, vorticity, vertical velocity, and several other atmospheric parameters with contours that tilt westward with height, though temperature contours tilt eastward with height for unstable modes. A poleward heat flux is observed in unstable modes, yielding the positive feedback necessary for cyclogenesis. Low pressure ...
Atmospheric instability is a condition where the Earth's atmosphere is considered to be unstable and as a result local weather is highly variable through distance and time. [ clarification needed ] [ 1 ] Atmospheric instability encourages vertical motion, which is directly correlated to different types of weather systems and their severity.
Stable stratification of fluids occurs when each layer is less dense than the one below it. Unstable stratification is when each layer is denser than the one below it. Buoyancy forces tend to preserve stable stratification; the higher layers float on the lower ones. In unstable stratification, on the other hand, buoyancy forces cause convection ...
The Turner stability class or Turner stability index is a classification of atmospheric stability over an interval of time based on measurements of surface-level wind speed and net solar radiation. Classes range from 1 (most unstable) to 7 (most stable).
Atmospheric GCMs (AGCMs) model the atmosphere (and typically contain a land-surface model as well) using imposed sea surface temperatures (SSTs). [5] They may include atmospheric chemistry. AGCMs consist of a dynamical core which integrates the equations of fluid motion, typically for: surface pressure; horizontal components of velocity in layers
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
Any atmospheric circulation system, whether it is a small-scale weather system or a large-scale zonal wind system, is maintained by the supply of kinetic energy.The development of such a system requires either a transformation of some other form of energy into kinetic energy, or the conversion of the kinetic energy of another system into that of the developing system. [3]
A stable marine layer may then develop over the ocean as a result. As this layer moves over progressively warmer waters, however, turbulence within the marine layer can gradually lift the inversion layer to higher altitudes, and eventually even pierce it, producing thunderstorms, and under the right circumstances, tropical cyclones .