Search results
Results from the WOW.Com Content Network
The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point arithmetic originally established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and ...
Conversely, precision can be lost when converting representations from integer to floating-point, since a floating-point type may be unable to exactly represent all possible values of some integer type. For example, float might be an IEEE 754 single precision type, which cannot represent the integer 16777217 exactly, while a 32-bit integer type ...
Provides a locale-independent, non-allocating, and non-throwing string conversion utilities from/to integers and floating point. <format> Added in C++20. Provides a modern way of formatting strings including std::format. <string> Provides the C++ standard string classes and templates. <string_view> Added in C++17.
Many languages have explicit pointers or references. Reference types differ from these in that the entities they refer to are always accessed via references; for example, whereas in C++ it's possible to have either a std:: string and a std:: string *, where the former is a mutable string and the latter is an explicit pointer to a mutable string (unless it's a null pointer), in Java it is only ...
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...
However, supposing that floating-point comparisons are expensive, and also supposing that float is represented according to the IEEE floating-point standard, and integers are 32 bits wide, we could engage in type punning to extract the sign bit of the floating-point number using only integer operations:
Converting a double-precision binary floating-point number to a decimal string is a common operation, but an algorithm producing results that are both accurate and minimal did not appear in print until 1990, with Steele and White's Dragon4. Some of the improvements since then include:
Bounds on conversion between decimal and binary for the 80-bit format can be given as follows: If a decimal string with at most 18 significant digits is correctly rounded to an 80-bit IEEE 754 binary floating-point value (as on input) then converted back to the same number of significant decimal digits (as for output), then the final string ...