Search results
Results from the WOW.Com Content Network
That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...
The Taylor series of f converges uniformly to the zero function T f (x) = 0, which is analytic with all coefficients equal to zero. The function f is unequal to this Taylor series, and hence non-analytic. For any order k ∈ N and radius r > 0 there exists M k,r > 0 satisfying the remainder bound above.
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.
For the second-order approximations of the third central moment as well as for the derivation of all higher-order approximations see Appendix D of Ref. [3] Taking into account the quadratic terms of the Taylor series and the third moments of the input variables is referred to as second-order third-moment method. [4]
We derive Itô's lemma by expanding a Taylor series and applying the rules of stochastic calculus. Suppose is an Itô drift-diffusion process that satisfies the stochastic differential equation
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
In today's puzzle, there are seven theme words to find (including the spangram). Hint: The first one can be found in the top-half of the board. Here are the first two letters for each word: WA. WA ...
where σ ij represents the covariance of two variables x i and x j. The double sum is taken over all combinations of i and j, with the understanding that the covariance of a variable with itself is the variance of that variable, that is, σ ii = σ i 2. Also, the covariances are symmetric, so that σ ij = σ ji. Again, as was the case with the ...