Search results
Results from the WOW.Com Content Network
The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal.
the weighted arithmetic mean of the median and two quartiles. Winsorized mean an arithmetic mean in which extreme values are replaced by values closer to the median. Any of the above may be applied to each dimension of multi-dimensional data, but the results may not be invariant to rotations of the multi-dimensional space. Geometric median
The median of a symmetric unimodal distribution coincides with the mode. The median of a symmetric distribution which possesses a mean μ also takes the value μ. The median of a normal distribution with mean μ and variance σ 2 is μ. In fact, for a normal distribution, mean = median = mode.
a measure of location, or central tendency, such as the arithmetic mean; a measure of statistical dispersion like the standard mean absolute deviation; a measure of the shape of the distribution like skewness or kurtosis; if more than one variable is measured, a measure of statistical dependence such as a correlation coefficient
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.The general form of its probability density function is = (). [citation needed]
The sample covariance matrix has in the denominator rather than due to a variant of Bessel's correction: In short, the sample covariance relies on the difference between each observation and the sample mean, but the sample mean is slightly correlated with each observation since it is defined in terms of all observations.
Just do a Google search on ["measures of central tendency"]. The first hit: "This section defines the three most common measures of central tendency: the mean, the median, and the mode." The next: "Measures of central tendency—mean, median, and mode—can help you capture, with a single number, what is typical of the data." And so on.
For example, the family of normal distributions has two parameters, the mean and the variance: if those are specified, the distribution is known exactly. The family of chi-squared distributions can be indexed by the number of degrees of freedom : the number of degrees of freedom is a parameter for the distributions, and so the family is thereby ...