Search results
Results from the WOW.Com Content Network
The effects of insulin vary depending on the tissue involved, e.g., insulin is most important in the uptake of glucose by muscle and adipose tissue. [2] This insulin signal transduction pathway is composed of trigger mechanisms (e.g., autophosphorylation mechanisms) that serve as signals throughout the cell. There is also a counter mechanism in ...
The insulin signal transduction pathway begins when insulin binds to the insulin receptor proteins. Once the transduction pathway is completed, the GLUT-4 storage vesicles becomes one with the cellular membrane. As a result, the GLUT-4 protein channels become embedded into the membrane, allowing glucose to be transported into the cell.
The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase. [5] Metabolically, the insulin receptor plays a key role in the regulation of glucose homeostasis; a functional process that under degenerate conditions may result in a range of clinical manifestations including diabetes and cancer.
The extracellular type II and type I kinase receptors binding to the TGF-β ligands. Transforming growth factor-β (TGF-β) is a superfamily of cytokines that play a significant upstream role in regulating of morphogenesis, homeostasis, cell proliferation, and differentiation. [2]
Insulin receptor substrate 1 (IRS-1) is a signaling adapter protein that in humans is encoded by the IRS1 gene. [5] It is a 180 kDa protein with amino acid sequence of 1242 residues. [ 6 ] It contains a single pleckstrin homology (PH) domain at the N-terminus and a PTB domain ca. 40 residues downstream of this, followed by a poorly conserved C ...
The insulin signal transduction pathway begins when insulin binds to the insulin receptor proteins. Once the transduction pathway is completed, the GLUT-4 storage vesicles becomes one with the cellular membrane. As a result, the GLUT-4 protein channels become embedded into the membrane, allowing glucose to be transported into the cell.
Through a series of kinase proteins, the proteins are constantly being phosphorylated and activated. At the end of the transduction process, the activated protein binds to the PIP 2 proteins embedded in the membrane. By doing so, the initial signal has successfully transmitted the extracellular signal.
Two main signal transduction mechanisms have been identified, via nuclear receptors, or via transmembrane receptors. In the first one, first messenger cross through the cell membrane, binding and activating intracellular receptors localized at nucleus or cytosol , which then act as transcriptional factors regulating directly gene expression.