Search results
Results from the WOW.Com Content Network
The water–gas shift reaction (WGSR) describes the reaction of carbon monoxide and water vapor to form carbon dioxide and hydrogen: CO + H 2 O ⇌ CO 2 + H 2. The water gas shift reaction was discovered by Italian physicist Felice Fontana in 1780. It was not until much later that the industrial value of this reaction was realized.
In thermodynamics, a temperature–entropy (T–s) diagram is a thermodynamic diagram used to visualize changes to temperature (T ) and specific entropy (s) during a thermodynamic process or cycle as the graph of a curve. It is a useful and common tool, particularly because it helps to visualize the heat transfer during a process.
The reaction is exothermic with ΔH= -41.1 kJ/mol and have an adiabatic temperature rise of 8–10 °C per percent CO converted to CO 2 and H 2. The most common catalysts used in the water-gas shift reaction are the high temperature shift (HTS) catalyst and the low temperature shift (LTS) catalyst.
The ideal temperature for a reaction under thermodynamic control is the lowest temperature at which equilibrium will be reached in a reasonable amount of time. [15] If needed, the selectivity can be increased by then slowly cooling the reaction mixture to shift the equilibrium further toward the most stable product.
This reaction to form carbon dioxide and molybdenum is endothermic at low temperatures, becoming less so with increasing temperature. [18] ΔH° is zero at 1855 K, and the reaction becomes exothermic above that temperature. Changes in temperature can also reverse the direction tendency of a reaction. For example, the water gas shift reaction
Figure 6:Reaction Coordinate Diagrams showing reactions with 0, 1 and 2 intermediates: The double-headed arrow shows the first, second and third step in each reaction coordinate diagram. In all three of these reactions the first step is the slow step because the activation energy from the reactants to the transition state is the highest.
Water-gas-shift reaction. The reaction that occurs in a water-gas-shift reactor is CO + H 2 O CO 2 + H 2. This produces a syngas with a higher composition of hydrogen fuel which is more efficient for burning later in combustion. Physical separation process.
The pressure on a pressure-temperature diagram (such as the water phase diagram shown above) is the partial pressure of the substance in question. A phase diagram in physical chemistry , engineering , mineralogy , and materials science is a type of chart used to show conditions (pressure, temperature, etc.) at which thermodynamically distinct ...