Search results
Results from the WOW.Com Content Network
A series circuit with a voltage source (such as a battery, or in this case a cell) and three resistance units. Two-terminal components and electrical networks can be connected in series or parallel. The resulting electrical network will have two terminals, and itself can participate in a series or parallel topology.
where r m is the membrane resistance (the force that impedes the flow of electric current from the outside of the membrane to the inside, and vice versa), r i is the axial resistance (the force that impedes current flow through the axoplasm, parallel to the membrane), and r o is the extracellular resistance (the force that impedes current flow ...
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
The star-to-delta and series-resistor transformations are special cases of the general resistor network node elimination algorithm. Any node connected by N resistors (R 1 … R N) to nodes 1 … N can be replaced by () resistors interconnecting the remaining N nodes. The resistance between any two nodes x, y is given by:
The resistance is measured after replacing all voltage- and current-sources with their internal resistances. That means an ideal voltage source is replaced with a short circuit, and an ideal current source is replaced with an open circuit. Resistance can then be calculated across the terminals using the formulae for series and parallel circuits ...
The Norton resistance R no is found by calculating the output voltage V o produced at A and B with no resistance or load connected to, then R no = V o / I no; equivalently, this is the resistance between the terminals with all (independent) voltage sources short-circuited and independent current sources open-circuited (i.e., each independent ...
The higher the axoplasmic resistance, , the smaller the value of , the harder it will be for current to travel through the axoplasm, and the shorter the current will be able to travel. It is possible to solve equation ( 12 ) and arrive at the following equation (which is valid in steady-state conditions, i.e. when time approaches infinity):
Series RL, parallel C circuit with resistance in series with the inductor is the standard model for a self-resonant inductor. A series resistor with the inductor in a parallel LC circuit as shown in Figure 4 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding and its self-capacitance.