Search results
Results from the WOW.Com Content Network
Depolarization is essential to the function of many cells, communication between cells, and the overall physiology of an organism. Action potential in a neuron, showing depolarization, in which the cell's internal charge becomes less negative (more positive), and repolarization, where the internal charge returns to a more negative value.
Polarization is observed in the light of the sky, as this is due to sunlight scattered by aerosols as it passes through Earth's atmosphere. The scattered light produces the brightness and color in clear skies. This partial polarization of scattered light can be used to darken the sky in photographs, increasing the contrast.
A typical action potential begins at the axon hillock [41] with a sufficiently strong depolarization, e.g., a stimulus that increases V m. This depolarization is often caused by the injection of extra sodium cations into the cell; these cations can come from a wide variety of sources, such as chemical synapses, sensory neurons or pacemaker ...
Its input polarization must be linear. Resulting output polarization is rotating linear polarization. Likewise, circular polarization can be depolarized with a rotating quarterwave plate. Output polarization is again linear. If a halfwave and a quarterwave plate are concatenated and rotate at different speeds, any input polarization is depolarized.
A neuron receives signals from neighboring cells through branched, cellular extensions called dendrites.The neuron then propagates an electrical signal down a specialized axon extension from the basal pole to the synapse, where neurotransmitters are released to propagate the signal to another neuron or effector cell (e.g., muscle or gland).
Fluorescence anisotropy or fluorescence polarization is the phenomenon where the light emitted by a fluorophore has unequal intensities along different axes of polarization. Early pioneers in the field include Aleksander Jablonski , Gregorio Weber , [ 1 ] and Andreas Albrecht. [ 2 ]
In electrodynamics, circular polarization of an electromagnetic wave is a polarization state in which, at each point, the electromagnetic field of the wave has a constant magnitude and is rotating at a constant rate in a plane perpendicular to the direction of the wave.
Polarization (physics), the ability of waves to oscillate in more than one direction; polarization of light allows the glare-reducing effect of polarized sunglasses Polarization (antenna) , the state of polarization (in the above sense) of electromagnetic waves transmitted by or received by a radio antenna