Search results
Results from the WOW.Com Content Network
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S {\displaystyle S} of integers and a target-sum T {\displaystyle T} , and the question is to decide whether any subset of the integers sum to precisely T {\displaystyle T} . [ 1 ]
This method is naturally extended to continuous domains. [2]The method can be also extended to high-dimensional images. [6] If the corners of the rectangle are with in {,}, then the sum of image values contained in the rectangle are computed with the formula {,} ‖ ‖ where () is the integral image at and the image dimension.
Example: Let 픽 be a finite field and take A = 픽. Then since 픽 is closed under addition and multiplication, A + A = AA = 픽, and so | A + A | = | AA | = | 픽 |. This pathological example extends to taking A to be any sub-field of the field in question. Qualitatively, the sum-product problem has been solved over finite fields:
The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...
SRS can be solved in polynomial time in the Real RAM model. [3] However, its run-time complexity in the Turing machine model is open, as of 1997. [1] The main difficulty is that, in order to solve the problem, the square-roots should be computed to a high accuracy, which may require a large number of bits.
The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem . The input to the problem is a multiset S {\displaystyle S} of n integers and a positive integer m representing the number of subsets.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In number theory, the divisor summatory function is a function that is a sum over the divisor function. It frequently occurs in the study of the asymptotic behaviour of the Riemann zeta function. The various studies of the behaviour of the divisor function are sometimes called divisor problems.