enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  3. Binomial series - Wikipedia

    en.wikipedia.org/wiki/Binomial_series

    The usual argument to compute the sum of the binomial series goes as follows. Differentiating term-wise the binomial series within the disk of convergence | x | < 1 and using formula , one has that the sum of the series is an analytic function solving the ordinary differential equation (1 + x)u′(x) − αu(x) = 0 with initial condition u(0) = 1.

  4. Pascal's pyramid - Wikipedia

    en.wikipedia.org/wiki/Pascal's_pyramid

    Pascal's pyramid's first five layers. Each face (orange grid) is Pascal's triangle. Arrows show derivation of two example terms. In mathematics, Pascal's pyramid is a three-dimensional arrangement of the trinomial numbers, which are the coefficients of the trinomial expansion and the trinomial distribution. [1]

  5. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    A simple example is the Fermat factorization method, which considers the sequence of numbers :=, for := ⌈ ⌉ +. If one of the x i {\displaystyle x_{i}} equals a perfect square b 2 {\displaystyle b^{2}} , then N = a i 2 − b 2 = ( a i + b ) ( a i − b ) {\displaystyle N=a_{i}^{2}-b^{2}=(a_{i}+b)(a_{i}-b)} is a (potentially non-trivial ...

  6. FOIL method - Wikipedia

    en.wikipedia.org/wiki/FOIL_method

    In elementary algebra, FOIL is a mnemonic for the standard method of multiplying two binomials [1] —hence the method may be referred to as the FOIL method.The word FOIL is an acronym for the four terms of the product:

  7. Binomial approximation - Wikipedia

    en.wikipedia.org/wiki/Binomial_approximation

    The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.

  8. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    Thus many identities on binomial coefficients carry over to the falling and rising factorials. The rising and falling factorials are well defined in any unital ring, and therefore can be taken to be, for example, a complex number, including negative integers, or a polynomial with complex coefficients, or any complex-valued function.

  9. Kummer's theorem - Wikipedia

    en.wikipedia.org/wiki/Kummer's_theorem

    In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in a paper, (Kummer 1852).