Search results
Results from the WOW.Com Content Network
In computer programming, a variable-length array (VLA), also called variable-sized or runtime-sized, is an array data structure whose length is determined at runtime, instead of at compile time. [1] In the language C , the VLA is said to have a variably modified data type that depends on a value (see Dependent type ).
C struct data types may end with a flexible array member [1] with no specified size: struct vectord { short len ; // there must be at least one other data member double arr []; // the flexible array member must be last // The compiler may reserve extra padding space here, like it can between struct members };
Some array data structures do not reallocate storage, but do store a count of the number of elements of the array in use, called the count or size. This effectively makes the array a dynamic array with a fixed maximum size or capacity; Pascal strings are examples of this.
sizeof can be used to determine the number of elements in an array, by dividing the size of the entire array by the size of a single element. This should be used with caution; When passing an array to another function, it will "decay" to a pointer type. At this point, sizeof will return the size of the pointer, not the total size of the array.
size_t is an unsigned integer type used to represent the size of any object (including arrays) in the particular implementation. The operator sizeof yields a value of the type size_t . The maximum size of size_t is provided via SIZE_MAX , a macro constant which is defined in the < stdint.h > header ( cstdint header in C++).
On the other hand, C99 introduced a number of new features that C++ did not support that were incompatible or redundant in C++, such as variable-length arrays, native complex-number types (however, the std:: complex class in the C++ standard library provides similar functionality, although not code-compatible), designated initializers, compound ...
A typical vector implementation consists, internally, of a pointer to a dynamically allocated array, [1] and possibly data members holding the capacity and size of the vector. The size of the vector refers to the actual number of elements, while the capacity refers to the size of the internal array.
For static-duration and automatic-duration variables, the size of the allocation must be compile-time constant (except for the case of variable-length automatic arrays [5]). If the required size is not known until run-time (for example, if data of arbitrary size is being read from the user or from a disk file), then using fixed-size data ...