Search results
Results from the WOW.Com Content Network
MODFLOW-OWHM [11] (version 1.00.12, October 1, 2016), The One-Water Hydrologic Flow Model (MODFLOW-OWHM, MF-OWHM or One-Water [12]), developed cooperatively between the USGS and the U.S. Bureau of Reclamation, is a fusion of multiple versions of MODFLOW-2005 (NWT, LGR, FMP, SWR, SWI) into ONE version, contains upgrades and new features and ...
MODFLOW code discretizes and simulates an orthogonal 3-D form of the governing groundwater flow equation. However, it has an option to run in a "quasi-3D" mode if the user wishes to do so; in this case the model deals with the vertically averaged T and S, rather than k and S s. In the quasi-3D mode, flow is calculated between 2D horizontal ...
Unlike mathematical models that use equations to describe, predict, and manage hydrologic systems, analog models use non-mathematical approaches to simulate hydrology. Two general categories of analog models are common; scale analogs that use miniaturized versions of the physical system and process analogs that use comparable physics (e.g ...
Steps in numerical modeling. The first step in numerical modeling is to capture the actual geological scenario quantitatively. For example, in mantle convection modeling, heat equations are used to describe the heat energy circulating in the system while Navier–Stokes equations describe the flow of viscous fluid (the mantle rock).
The most common equation used to calculate major head losses is the Darcy–Weisbach equation. Older, more empirical approaches are the Hazen–Williams equation and the Prony equation. For relatively short pipe systems, with a relatively large number of bends and fittings, minor losses can easily exceed major losses.
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
Fluid conductance is a measure of how effectively fluids are transported through a medium or a region. The concept is particularly useful in cases in which the amount of fluid transported is linearly related to whatever is driving the transport.
The Kozeny–Carman equation (or Carman–Kozeny equation or Kozeny equation) is a relation used in the field of fluid dynamics to calculate the pressure drop of a fluid flowing through a packed bed of solids. It is named after Josef Kozeny and Philip C. Carman. The equation is only valid for creeping flow, i.e. in the slowest limit of laminar ...