Ad
related to: how to multiply large exponents with fractionsThis site is a teacher's paradise! - The Bender Bunch
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- 20,000+ Worksheets
Browse by grade or topic to find
the perfect printable worksheet.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Worksheet Generator
Use our worksheet generator to make
your own personalized puzzles.
- Educational Songs
Search results
Results from the WOW.Com Content Network
When an exponent is a positive integer, that exponent indicates how many copies of the base are multiplied together. For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power.
In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.
An operation can be legal in principle, but the result can be impossible to represent in the specified format, because the exponent is too large or too small to encode in the exponent field. Such an event is called an overflow (exponent too large), underflow (exponent too small) or denormalization (precision loss).
A common technique for multiplication with larger numbers is called long multiplication. This method starts by writing the multiplier above the multiplicand. The calculation begins by multiplying the multiplier only with the rightmost digit of the multiplicand and writing the result below, starting in the rightmost column.
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
The fractional part is called the fraction. To understand both terms, notice that in binary, 1 + mantissa ≈ significand, and the correspondence is exact when storing a power of two. This fact allows for a fast approximation of the base-2 logarithm, leading to algorithms e.g. for computing the fast square-root and fast inverse-square-root.
Visualization of powers of two from 1 to 1024 (2 0 to 2 10) as base-2 Dienes blocks. A power of two is a number of the form 2 n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent.
The second most important decision is in the choice of the base of arithmetic, here ten. There are many considerations. The scratchpad variable d must be able to hold the result of a single-digit multiply plus the carry from the prior digit's multiply. In base ten, a sixteen-bit integer is certainly adequate as it allows up to 32767.
Ad
related to: how to multiply large exponents with fractionsThis site is a teacher's paradise! - The Bender Bunch