Search results
Results from the WOW.Com Content Network
The names "lambda abstraction", "lambda function", and "lambda expression" refer to the notation of function abstraction in lambda calculus, where the usual function f (x) = M would be written (λx. M), and where M is an expression that uses x. Compare to the Python syntax of lambda x: M.
The reverse operation to lambda lifting is lambda dropping. [3] Lambda dropping may make the compilation of programs quicker for the compiler, and may also increase the efficiency of the resulting program, by reducing the number of parameters, and reducing the size of stack frames. However it makes a function harder to re-use.
In Python, functions are first-class objects that can be created and passed around dynamically. Python's limited support for anonymous functions is the lambda construct. An example is the anonymous function which squares its input, called with the argument of 5:
Both Proc.new and lambda in this example are ways to create a closure, but semantics of the closures thus created are different with respect to the return statement. In Scheme, definition and scope of the return control statement is explicit (and only arbitrarily named 'return' for the sake of the example). The following is a direct translation ...
The examples 1 and 2 denote different terms, differing only in where the parentheses are placed. They have different meanings: example 1 is a function definition, while example 2 is a function application. The lambda variable x is a placeholder in both examples. Here, example 1 defines a function .
This creates a higher-order function, and passing this higher function itself allows anonymous recursion within the actual recursive function. This can be done purely anonymously by applying a fixed-point combinator to this higher order function. This is mainly of academic interest, particularly to show that the lambda calculus has recursion ...
Dirichlet lambda function, λ(s) = (1 – 2 −s)ζ(s) where ζ is the Riemann zeta function; Liouville function, λ(n) = (–1) Ω(n) Von Mangoldt function, Λ(n) = log p if n is a positive power of the prime p; Modular lambda function, λ(τ), a highly symmetric holomorphic function on the complex upper half-plane
A function's identity is based on its implementation. A lambda calculus function (or term) is an implementation of a mathematical function. In the lambda calculus there are a number of combinators (implementations) that satisfy the mathematical definition of a fixed-point combinator.